
Journal of Computational Physics 228 (2009) 1658–1677
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A spectrally refined interface approach for simulating multiphase flows

Olivier Desjardins *, Heinz Pitsch
Department of Mechanical Engineering, Stanford University, CA 94305, United States
a r t i c l e i n f o

Article history:
Received 20 May 2008
Received in revised form 29 September
2008
Accepted 2 November 2008
Available online 20 November 2008

Keywords:
Multiphase flow
Incompressible flow
DNS
Spectral method
Level set method
Ghost fluid method
Implicit scheme
Primary atomization
Sub-cell resolution
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.11.005

* Corresponding author. Fax: +1 650 725 3525.
E-mail address: desjardi@stanford.edu (O. Desjar
a b s t r a c t

This paper presents a novel approach to phase-interface transport based on pseudo-spec-
tral sub-grid refinement of a level set function. In each flow solver grid cell, a set of quad-
rature points is introduced on which the value of the level set function is known. This
methodology allows to define a polynomial reconstruction of the level set function in each
cell. The transport is performed using a semi-Lagrangian technique, removing all con-
straints on the time step size. Such an approach provides sub-cell resolution of the
phase-interface and leads to excellent accuracy in the transport, while a reasonable cost
is obtained by pre-computing some of the metrics associated with the polynomials. To cou-
ple this approach with a flow solver, an converging curvature computation is introduced.
First, a second order explicit distance to the sub-grid interface is reconstructed on the flow
solver mesh. Then, a least squares approach is employed to extract the curvature from this
distance function. This technique is found to combine the high accuracy and good conser-
vation found in the particle level set method with the converging curvature usually
obtained with classical high order PDE transport of the level set function. Tests are pre-
sented for both transport as well as two-phase flows, that suggest that this technique is
capable of retaining the thin liquid structures that are expected in turbulent atomization
of liquids.

� 2008 Elsevier Inc. All rights reserved.
1. Motivation and objectives

Accurately simulating complex, turbulent, multiphase flows poses several major numerical challenges. The two phases
can have different material properties, such as densities in 1:1000 ratio, which renders the discretization of the Navier–
Stokes equations challenging. Moreover, the curvature of the phase-interface generates a surface tension force, which acts
only at the interface itself. The singular nature of this force requires specific numerical treatments. Moreover, accurately
computing this force can be problematic since it requires the knowledge of the interface curvature. The interface curvature
is a high order term that is obtained by taking second derivatives, and it is hence prone to amplify numerical errors. Hence,
ensuring the convergence of the curvature is a major hurdle of multiphase simulations. Finally, the accuracy of the interface
transport itself can lead to difficulties, since the quality of the transport for most methods deteriorates greatly when consid-
ering small-scale structures. While this may not be an issue for some applications, it can become critical for problems such as
turbulent atomization, where the focus is precisely on the smallest liquid structures that are being generated by the flow.
Because of all these issues, multiphase flows remain difficult to simulate with good accuracy and robustness.

Several methods have been used in the past to handle the discontinuous material properties that can be found in two-
phase flows. One of the most frequently used approaches is the continuum surface force (CSF) model introduced by Brackbill
et al. [1]. The idea behind this method is to smear out the discontinuities over a few grid cells in order to resolve them. While
. All rights reserved.

dins).

mailto:desjardi@stanford.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


O. Desjardins, H. Pitsch / Journal of Computational Physics 228 (2009) 1658–1677 1659
this enables a standard discretization of the density jump and the surface tension force, it can be expected to deteriorate the
accuracy of the small-scale structures. The ghost fluid method (GFM) [2] provides an interesting alternative to CSF by
expressing all discontinuities explicitly. The discretization is performed on variables that are extended by continuity in order
to remove the jumps. These jumps are then explicitly added, leading to a sharp description of the interfacial terms. Addition-
ally, GFM naturally embeds the surface tension force in the pressure equation as a pressure jump. GFM has been used re-
cently to simulate complex problems such as the atomization of liquid diesel jets [3–5], and possible improvements to
this approach have been proposed [6].

However, all these methods rely on a numerical scheme to represent and transport the phase-interface, in order to local-
ize the jumps and to provide the interfacial curvature. Many approaches have been developed to perform these tasks, the
most common being probably the volume of fluid (VOF) [7] and the level set (LS) [8,9] methods. While the first tracks
the liquid volume fraction, the second tracks the phase-interface itself in the form of an iso-contour of a level set function.
Other techniques exist that rely on a two-dimensional unstructured mesh in combination with Lagrangian methods to rep-
resent and transport the interface [10]. All these approaches have some strengths and shortcomings, and no method has
clearly emerged as the ideal interface transport scheme.

Amongst the fundamental requirements of an interface transport scheme is the capability to compute a curvature that
converges as the mesh is refined, and the capability to transport accurately small liquid structures without loosing mass.
However, most of the schemes that try to improve the accuracy of the small-scale transport, either by coupling LS with
VOF information [11,12] or with Lagrangian particles [13] tend to degrade the accuracy of the curvature computation, be-
cause of the use of local corrections to the LS field. Coyajee et al. [14] showed that such an approach leads to inaccurate cur-
vatures, and that a delocalization of the corrections should be devised to avoid this problem.

Other interesting strategies have been developed to obtain a converging curvature. Sussman et al. [6] uses a version of the
coupled level set/volume of fluid (CLSVOF) method where the curvature is computed directly from the volume fraction scalar
instead of the taking it from the level set field, leading to a second order converging curvature. However, this approach might
seem unpractical in complex problems, since large seven points-stencils are associated with the curvature computation.
Herrmann [15] proposed the refined level set grid (RLSG) method to locally refine the LS mesh, in order to control the errors
associated with the interfacial transport, and to retain a converging curvature. However, this method can be demanding to
implement, since it requires a separate mesh for the LS field. Moreover, it is unclear how much refinement can be afforded in
realistic problems, considering that an explicit time integration is used, leading to smaller time steps as the LS mesh is re-
fined. Lagrangian-based methods that extract a converging curvature from Lagrangian particles have been developed [16].
Classical Lagrangian methods [13,10] naturally provide the strong solution rather than the weak solution to the interface
transport equation, and therefore do not naturally perform curvature regularization. In the context of complex turbulent
flows, Lagrangian-based methods can be challenging to employ. The complex nature of the turbulent velocity field can inter-
fere with the ability of particle-based approaches to maintain sharp sub-grid interfacial structures, ultimately affecting the
numerical accuracy and robustness of the transport.

In this work, the choice is made to improve the sub-cell representation of a level set function through a pseudo-spectral ap-
proach. In each cell, a polynomial reconstruction of the level set function is created, leading to highly improved accuracy of the
transport at the smallest scales. By maintaining a Eulerian-type description of the interface, topology changes and character-
istics crossings are handled automatically. Such a strategy is not new, and has been employed before [17–19]. However, all the
previous work relied on a fully pseudo-spectral description of all the equations. Because of the cost associated with high order
pseudo-spectral schemes, the order of the pseudo-spectral method presented by Marchandise et al. [18] remained limited. In
Sussman and Hussaini [17], only level set transport tests were performed, without the coupling to the Navier–Stokes equations.
Here, in a similar spirit as in the RLSG method [15], the pseudo-spectral description is used only for the LS, with the objective to
introduce sub-cell interface resolution. Thanks to the potentially high order polynomial description, the frequent re-initializa-
tion step that is characteristic to level set methods becomes superfluous, since the increased accuracy handles both small and
large gradients adequately. In order to allow for very fine resolution without affecting the time step size, the interface transport
is performed using a semi-Lagrangian approach. Finally, a method to extract the curvature is proposed that computes a con-
verging curvature at the scale of the flow solver grid, therefore removing all possible coupling with sub-cell fluctuations.

This paper is organized as follows: the next section presents the spectrally refined interface approach, including the trans-
port scheme and the approach used to extract the interfacial curvature. The third section presents the coupling with the Na-
vier–Stokes solver, as well as the methods used to solve the momentum equations. Finally, the fourth section presents
numerical tests used to validate the methodology, including the numerical simulation of a turbulent two-phase shear layer.

2. Spectrally refined interface (SRI) approach

This section describes in details the pseudo-spectral, collocation-based, polynomial reconstruction of a level set function
that is used to improve the quality of the interface description by introducing sub-cell resolution.

2.1. Level set methodology

In the level set approach, the interface is defined implicitly as an iso-surface G0 of a smooth function G. Formally, any
function can be used as a level set function, however a signed distance to the interface is the most commonly used function,
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for its smooth behavior makes it easy to transport with good accuracy. Yet, the approach that is described in this work is
within some constraints independent of the actual function used for G. Later in this section, a short discussion on the con-
sequence of the choice of this function is given.

In the level set approach, the transport of the interface with a velocity u is described by solving a simple advection equa-
tion for the level set function,
Fig.
oG
ot
þ u � rG ¼ 0: ð1Þ
The state-of-the-art for level set transport typically relies on WENO-type schemes [20–22] in order to combine accurate
transport and numerical robustness. While these schemes will give good accuracy in general, they tend to be overly diffusive
when transporting small-scale structures [23,24]. Moreover, Eq. (1) will ensure the transport of G, but not the preservation of
its shape in the direction normal to the interface. As a result, the very nature of G is likely to vary with time, and very large or
very small gradients are likely to be generated by Eq. (1). This issue requires a specific treatment, called re-initialization, dur-
ing which the desired functional form of G is re-set, for example to a distance function, in order to avoid the development of
excessive gradients that might lead to inaccuracy and ultimately to severe numerical instabilities. Such a re-initialization
procedure can be based on a Hamilton–Jacobi partial differential equation (HJPDE) solved in pseudo-time for G, as in [22],
or on geometrical algorithms, such as the fast marching method (FMM) [8]. All these approaches have in common the fact
that they introduce errors in the transport of G, and typically lead to front displacement. These inaccuracies essentially man-
ifest through the disappearance of small-scale interfacial features. These small-scale features, however, can be fundamental
to the physics of multiphase flows. It is important to recognize that the improvement of interface representations in numer-
ical simulations requires an accurate description of the smallest scales, hence the idea of introducing a sub-cell description of
the interface.

2.2. Pseudo-spectral collocation-based sub-cell reconstruction

In order to enable sub-cell resolution, a polynomial reconstruction of the level set function is here generated in each cell
by introducing a set of quadrature points. These points correspond to the locations where the nodal values of the level set
function G are specified. Several considerations have to be taken into account while choosing the quadrature points, such as
the accuracy of the resulting reconstruction. For example, a uniform distribution of quadrature points inside each cell is ex-
pected to lead to the Runge phenomenon, which will strongly limit the accuracy of the polynomial reconstruction [25,26]. To
avoid this issue, the most logical approach is to employ Gauss quadrature. Here, the choice is made to use Gauss–Lobatto
quadrature, such that some quadrature points are located on the cell faces. This property will be used to improve the con-
tinuity of the level set function across cells. The Gauss–Lobatto quadrature points can be based on any suitable family of
orthogonal polynomials, such as Legendre or Chebyshev. Fig. 1 shows an example of quadrature points for different numbers
of unknowns p.

The multi-dimensional extension of this approach is straightforward for the structured cartesian mesh considered here.
However, it is also possible for complex unstructured meshes by using linear transformations [27]. Sample two-dimensional
sets of quadrature nodes in a cell are shown in Fig. 2.

In each flow solver cell, the quadrature points located on the right, top, and far face are considered as ghost nodes, whose
G values are equal to those of the neighboring cells. For example, in the x-direction, the values of the quadrature nodes lo-
cated at the right face of cell i are not stored, but considered to be equal to the G values of the quadrature nodes located at the
left face of cell i + 1. This is illustrated in Fig. 3 for a two-dimensional configuration. This approach avoids any redundancy in
computing face points, and naturally improves the continuity of the polynomials across cell faces.

Because of the structured environment which is considered here, one index will be used per direction to describe the
computational space. Let the G value of the quadrature point (l,m,n) of the flow solver cell (i, j,k) be denoted Gl;m;n

i;j;k , and its
1. Location of the Gauss–Lobatto quadrature nodes based on the Legendre polynomials in one dimension for various numbers of unknowns p.



Fig. 2. Location of the Gauss–Lobatto quadrature nodes based on the Legendre polynomials in two dimensions for various numbers of unknowns p2.

Fig. 3. Ghost quadrature point locations (crosses), normal quadrature points (circles), and inter-cell communication patterns (arrows).
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position vector xl;m;n
i;j;k . Consider the number of quadrature points per direction to be p. For the sake of simplicity of notation,

this number of points will be considered equal for each direction. Using the cardinal functions for algebraic interpolation
LaðxÞ for a 2 s1; pt, the level set function reconstruction within cell (i, j,k) will be written
Gi;j;kðxÞ ¼
Xp

l¼1

Xp

m¼1

Xp

n¼1

LlðxÞLmðxÞLnðxÞGl;m;n
i;j;k : ð2Þ
Note that this reconstruction is of order p � 1. This expression can be further simplified to account for the independence of
the directions and the simple form of La. Consider a cell of unit size in one direction and let rl with l 2 s1; pt represent the
position of the lth quadrature point in that direction, for which then r1 = 0 and rp ¼ 1. Similarly, let the flow solver mesh be
defined by the location of the lower, left, proximal corner ðxi; yj; zkÞ for each cell (i, j,k). The basis polynomials are then written
LaðrÞ ¼
Qp

b¼1;b–aðr � rbÞQp
b¼1;b–aðra � rbÞ

: ð3Þ
The polynomial reconstruction of the level set function for cell (i, j,k) will then be expressed directly as
Gi;j;kðx; y; zÞ ¼
Xp

l¼1

Ll x� xi

xiþ1 � xi

� �Xp

m¼1

Lm y� yj

yjþ1 � yj

 !Xp

n¼1

Ln z� zk

zkþ1 � zk

� �
Gl;m;n

i;j;k : ð4Þ
The computational cost of this approach remains limited, since some of the quantities related to the polynomial reconstruc-
tion can be pre-computed for a unit cell and stored. The one-dimensional equivalent to Eq. (4) is
GiðxÞ ¼
Xp

l¼1

Ll x� xi

xiþ1 � xi

� �
Gl

i: ð5Þ
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This expression can be expanded into
GiðxÞ ¼
Xp

l¼1

Qp
b¼1;b–l

x�xi
xiþ1�xi

� �
� rb

� �
Qp

b¼1;b–lðrl � rbÞ
Gl

i; ð6Þ
which can be re-written as
GiðxÞ ¼ P
x� xi

xiþ1 � xi

� �Xp

l¼1

Gl
i

x�xi
xiþ1�xi

� rl

� �
Ql

; ð7Þ
where
PðrÞ ¼
Yp

a¼1

ðr � raÞ and Q l ¼
Yp

a¼1;a–l

ðrl � raÞ: ð8Þ
For l 2 s1; pt, the quantity Ql can be pre-computed and stored, making the polynomial evaluation at any point in space effi-
cient. In order to further reduce the computational cost associated with this sub-cell polynomial reconstruction, these poly-
nomials are created only in a narrow band around the front, i.e. around the G0 value of the level set function, as illustrated by
Fig. 4.

2.3. Semi-Lagrangian transport

Having a sub-cell polynomial reconstruction of the level set function G in each cell is only the first step. An efficient and
accurate transport scheme must now be devised. Classically, pseudo-spectral methods have been used to solve conservation
laws by computing fluxes from the polynomials directly. This approach is spectrally accurate, but it leads to very strong time
step size restrictions. Indeed, as can be seen in Fig. 1, the smallest distance between two quadrature nodes decreases faster
for Gauss-type quadratures than for a uniform distribution as p increases, leading rapidly to very severe CFL restrictions.
More precisely, it can be shown that the time step size should vary as p�2. This makes this approach unsuited in the case
where p > 3. As a consequence, a different approach has to be followed that allows to circumvent the time step restriction
associated with sub-cell refinement.

Semi-Lagrangian (SL) transport naturally emerges as an attractive alternative. Instead of discretizing Eq. (1), SL transport
consists of observing that G should be constant along the trajectory of material points evolving at velocity u. Therefore, the
trajectory that passes through xnþ1 at time tnþ1 can be followed backward in time to tn ¼ tnþ1 � Dt to obtain the old location
xn. The value of the level set function Gnþ1 at xnþ1 can simply be obtained by noting that Gnþ1ðxnþ1Þ ¼ GnðxnÞ. Because of the
Lagrangian nature of this method, larger time step sizes can be used. The only requirement is the computation of xn from
xnþ1, which involves solving an ordinary differential equation. Moreover, this approach is efficient and easy to implement.
These advantages make SL transport seemingly a beneficial method for the discretization of any advection term. But the
method is typically avoided for conserved quantities, since it does not have any conservation property. This limitation is
not a problem in the case of level set, where the transport equation (Eq. (1)) is already written in non-conservative form.
Fig. 4. Narrow band spectral refinement around the G0 iso-contour of the level set function G (thick line).
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Another commonly accepted limitation of SL transport is its tendency to be overly diffusive [28]. This is due to the interpo-
lation step that has to be performed to compute GnðxnÞ, for xn is unlikely to coincide with the locations where Gn is known.
However, in the framework of SRI, a polynomial reconstruction of order p � 1 is readily available in each cell. Hence, this
polynomial can simply be evaluated at the old location xn, and high accuracy can be expected from the SL transport. It is
therefore expected that numerical diffusion will not be an issue. Fig. 5 illustrates the transport procedure. Each quadrature
point is advected backwards in time (Fig. 5(a) and (b)) using a Runge–Kutta scheme. The order of the time integration can be
varied between first and fourth order. The effect of the temporal order of accuracy will be discussed at the end of this section.
To construct the velocity vector in the RK algorithm, a tri-linear interpolation from the eight closest points is used. At the old
location, the polynomial reconstruction of G is evaluated (Fig. 5(c)), leading to the new G value at the new quadrature point
location xnþ1 (Fig. 5(d)). Note that this procedure is applicable only when the old location xn lies within the narrow band
where the polynomial reconstruction of G is available. In the case where xn falls outside the refined region, the procedure
is modified to use either a boundary condition value for the level set function or to revert back to unrefined level set values
that can be transported using a classical scalar transport scheme. As an example, if the level set function is taken to be a
signed distance function, i.e.
j/ðx; tÞj ¼ jx� xCj; ð9Þ
where xC corresponds to the point on the interface that is closest to x, and /ðx; tÞ > 0 on one side of the interface, and
/ðx; tÞ < 0 on the other side, then the values of the level set function need to be provided outside of the narrow band. This
can be done either by transporting the level set using a classical approach, preferably using fast, low-order accurate methods,
or by extending the distance function from the narrow band to a larger band using a standard re-initialization technique. If
the choice is made to use a sharp hyperbolic tangent function, i.e.
wðx; tÞ ¼ 1
2

tanh
/ðx; tÞ

2�

� �
þ 1

� �
; ð10Þ
where � is the thickness of the function, then, as long as � is small enough, its values outside the refined narrow band can be
approximated by 0 or 1, depending on which side of the interface is considered.

2.4. Stabilization technique

Ensuring the stability of the numerical method is fundamental. In multi-domain spectral methods, the stability is ensured
by using a Riemann solver that introduces diffusion in the treatment of the fluxes at the cell faces [27,25]. Because SL trans-
port is used here, this approach is not applicable. As a consequence, the stability of the proposed approach could be an issue.
In order to alleviate this potential problem, two methods have been employed. The first method has already been described,
and consists of reducing the cell to cell oscillations of the polynomials by enforcing that the face quadrature nodes share the
same values. While not discretely ensuring the continuity of the polynomials across cells, this greatly reduces the oscillations
between each sub-cell reconstruction. The other method that is employed here to ensure the robustness of the SRI approach
is to revert back to local tri-linear interpolations between quadrature nodes when the polynomial is found to oscillate, as
shown in Fig. 6. Very simple and straightforward to implement, the idea behind this approach is to check that each polyno-
mial evaluation lies between the level set values of the eight closest quadrature points. If it is indeed the case, then the poly-
nomial evaluation is considered valid, and therefore trusted. If it is not the case, then it means that locally the polynomial
reconstruction is oscillating, and therefore it is replaced by the use of tri-linear interpolation. This was found to be sufficient
to remove all oscillations from the computed solutions. Moreover, it was also found that it is only rarely necessary to revert
to tri-linear interpolation, and therefore it is expected to have little impact on the accuracy of the method, especially since
the second order error introduced in this tri-linear interpolation step is at the sub-cell level, therefore the error is of order
OððDx=pÞ2Þ.

2.5. Curvature computation

A central element of multiphase models is the computation of the interface curvature. Indeed, this term governs the sur-
face tension force, which itself is fundamental to capturing accurately two-phase flow phenomena. However, extracting a
xn+1

a

xn+1

xn

b

xn+1

G (x )nn

c

n+1G   (x   )n+1

nnG (x )

d
Fig. 5. Semi-Lagrangian transport of the spectrally refined level set function G.
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Fig. 6. One-dimensional illustration of the stabilization approach for SRI: when evaluating the polynomial function (solid line) at a new location (open
circle) outside the quadrature points (filled circles), the resulting value is replaced by a linear interpolation between the closest neighbors (dashed line) if
the polynomial evaluation does not lie between the values of the closest neighbors.
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curvature that converges under mesh refinement from the sub-cell information that is available through SRI can be challeng-
ing, since it is likely that sub-cell structures will appear, that should not be seen by the momentum solver mesh. Two path-
ological cases are presented in Fig. 7. Fig. 7(a) illustrates the case when the interface is flat over each cell. This case would
lead to a zero sub-cell curvature, while the curvature on the flow solver mesh is clearly non-zero. The opposite situation is
shown in Fig. 7(b), where small sub-cell oscillations in front position are present. In this case, the sub-cell curvature is dif-
ficult to compute, and many different formulations are possible. Herrmann [15] chooses to compute local sub-cell curva-
tures, and then evaluates surface-averages. It is unclear whether such an approach will provide an adequate curvature,
since the surface-averaged quantity can be polluted by sub-cell oscillations.

This suggests that the curvature should be computed from information resolvable by the flow solver mesh. In other
words, since the length scales below 2Dx are not resolved by the flow solver, and therefore might not correspond to physical
phenomena, these should be filtered out of the interface before the curvature is computed. In order to do this, two steps are
introduced:

� Reconstruction of a signed distance to the interface on the flow solver mesh. This operation is done by combining a marching
cubes (MC) algorithm [29] with a parallel fast marching method (FMM) [8,30], leading to a very fast and efficient algo-
rithm. Only the narrow band of flow solver cells that are required in the computation of the curvature needs to possess
the distance information. The initial distance to the interface is measured explicitly using a second order approach illus-
trated in Fig. 8. From the sub-cell interface information, an algorithm similar to marching cubes (MC) [29] is used to tri-
angulate the interface. Each closest flow solver cell is then explicitly projected onto the triangulated interface, providing
both the normal vector n and the distance to the interface. This information is then extended over a few cells using FMM.
Because both MC and FMM are at best only second order accurate, the detection of the interface crossings shown in
Fig. 8(b) is performed using linear interpolation.

� Least squares computation of curvature from the reconstructed distance function. Following Marchandise et al. [18], a third
order least squares algorithm is used to approximate the distance function resulting from the previous step. This approach
is found to provide a mesh converging curvature, because of the tendency of the least squares method to smear out some
of the numerical errors on the distance field. This is shown by evaluating the curvature of a circle of diameter D = 1 cen-
a b
Fig. 7. Pathological cases for sub-cell curvature computation.



Fig. 8. Second order distance reconstruction on the flow solver mesh.

O. Desjardins, H. Pitsch / Journal of Computational Physics 228 (2009) 1658–1677 1665
tered in a [0,2] � [0,2] domain discretized with various meshes, for which the errors are summarized in Table 1. At least
first order convergence of the curvature is recovered, and the curvature is found to converge faster for poorly resolved
structures.

2.6. Re-initialization

Similar to the discontinuous Galerkin method of Marchandise et al. [18], the re-initialization of the level set function is
found to be mostly superfluous when using the SRI method. Only when the gradient of the level set function becomes overly
small or large, the need to re-initialize the G-field arises, since the triangulation of the sub-cell interface can then become
inaccurate. As a result, a re-initialization step is necessary, however it is performed only rarely, typically for every 100 time
steps. Two re-initialization strategies have been employed and compared. The first consists simply of interpolating on the
quadrature points the distance field that is reconstructed on the flow solver mesh. While being very inexpensive, this ap-
proach removes all the sub-cell information that was stored on the quadrature points, and therefore can introduce significant
errors, i.e. of the same order as what is expected from a classical re-initialization step on the flow solver mesh. However,
since this re-initialization needs to be performed only rarely, it is not expected to affect the quality of the simulations.
The second approach tested here uses the triangulated interface to explicitly re-evaluate the distance of each quadrature
point to the interface. This is much more accurate since the errors are second order, based on the sub-cell mesh. Obviously,
the cost of this re-initialization step is much greater, since all quadrature points need to be explicitly projected onto the
Table 1
Convergence of the L2 error of least squares curvature with mesh spacing.

Mesh D/Dx Error

8 � 8 4 0.62297
16 � 16 8 0.11251
32 � 32 16 0.06577
64 � 64 32 0.03378
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triangulated interface so that their distance can be evaluated. In realistic cases, this operation was found to have the cost of
several flow solver time steps. Consequently, the first re-initialization strategy is preferred.

2.7. Solid body rotation of a notched disk

Having described the SRI approach in detail, numerical tests are now presented in order to assess the capability of the
method to accurately represent small-scale interface transport. The default SRI formulation employed in these test cases uses
p = 5 Gauss–Lobatto quadrature nodes based on Legendre polynomials, and a second order Runge–Kutta time integration.
The effect of varying these parameters will be evaluated throughout this section.

The solid body rotation of a notched circle has often been used to assess the quality of interface transport. In a
[�0.5,0.5] � [�0.5,0.5] domain, a circle of radius 0.15 with a notch of height 0.25 and width 0.05, initially centered at
(0,0.25), undergoes a solid body rotation at angular velocity 2p. A 502 flow solver grid is used, and the time step size is
set to 1/200, meaning that 200 time steps are necessary to perform one full rotation of the circle. This leads to a CFL number
close to 0.77. The level set function is taken to be a hyperbolic tangent function of thickness � ¼ Dx=p. Fig. 9 compares the
exact solution with the computed solution after one rotation and after 50 rotations.

Even though the mesh used for this simulation is very coarse and resolves the notch on only two cells, the SRI solution
appears excellent after one rotation, and it remains very satisfactory even after 50 rotations. This first result suggests that the
SRI concept enables a highly accurate description of small interfacial features, even for long time transport.

2.7.1. Effect of temporal accuracy
In order to understand the effect of the order of accuracy of the Runge–Kutta scheme in the SL transport, the same

notched circle is now transported using fourth order Runge–Kutta. Fig. 10 presents the transported solution after one rota-
tion and after 50 rotations. While the solution after one rotation shows very little difference compared to the interface loca-
Fig. 9. Solid body rotation of Zalesak’s disk with second order Runge–Kutta for the SL transport, and p = 5. (a) Exact interface location (thick line),
quadrature nodes colored by the level set function, and flow solver mesh. (b) Solution after one rotation: exact solution (thin line) and SRI solution (thick
line). (c) Solution after 50 rotations: exact solution (thin line) and SRI solution (thick line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Solid body rotation of Zalesak’s disk with fourth order Runge–Kutta for the SL transport, and p = 5. (a) Solution after one rotation: exact solution
(thin line) and SRI solution (thick line). (b) Solution after 50 rotations: exact solution (thin line) and SRI solution (thick line).
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tion computed using second order Runge–Kutta, the solution after 50 rotations is greatly improved by using fourth order
Runge–Kutta temporal integration, and compares very well with the exact solution.

2.7.2. Effect of polynomial order
The impact of the number of quadrature points per cell on the accuracy of the interfacial transport is now assessed. The

previous test clearly showed that the temporal errors become dominant with 50 iterations, therefore the following tests will
be performed with the fourth order Runge–Kutta. Fig. 11 shows the performance of SRI with p = 3. While the solution after
one rotation remains satisfactory, although slightly distorted, the interface rapidly deteriorates. Already after 10 rotations,
the notch has disappeared. The poor accuracy of the polynomial reconstruction strongly limits the capability of transporting
the small-scale notch, but also the capability of accurately representing the circle itself for a long time.

Fig. 12 shows the same test case with p = 9. As expected, the accuracy is very satisfactory, and even after 50 iterations the
computed interface location follows very accurately the exact solution. For the case of the solid body rotation of Zalesak’s
disk, these results suggest that p = 5 is enough to obtain a good solution, but that p could be increased in cases where spatial
accuracy is more important. The temporal accuracy of the Runge–Kutta integration has an impact for long time transport,
and fourth order seems desirable. However, it can be expected that for a less trivial problem, temporal accuracy may not
play such an important role.

2.7.3. Effect of quadrature points
Finally, the impact of the distribution of quadrature points in the cells is discussed. Fig. 13 presents results for the Zale-

sak’s disk problem solved using Gauss–Lobatto quadrature based on Chebychev polynomials and Fig. 14 shows results ob-
tained with a uniform distribution of quadrature nodes. The results obtained with the Chebychev-based quadrature are
similar to those computed with the Legendre-based quadrature, although they seem slightly less accurate. Indeed, after
50 rotations, the notch does not appear to be as well preserved when using Chebychev-based Gauss–Lobatto quadrature.
However, these differences are small and suggest that the accuracy of SRI is only weakly dependent on the choice of poly-
nomials used in the Gauss–Lobatto quadrature.

The uniform distribution, on the other hand, gives very distorted solutions even for the first rotation, and most features of
the notched circle are lost after 50 rotations. These poor results are expected, since the accuracy of the polynomial recon-
struction is known to be much better when using Gaussian quadrature.
Fig. 11. Solid body rotation of Zalesak’s disk with fourth order Runge–Kutta for the SL transport, and p = 3. (a) Solution after one rotation: exact solution
(thin line) and SRI solution (thick line). (b) Solution after 10 rotations: exact solution (thin line) and SRI solution (thick line).

Fig. 12. Solid body rotation of Zalesak’s disk with fourth order Runge–Kutta for the SL transport, and p = 9. (a) Solution after one rotation: exact solution
(thin line) and SRI solution (thick line). (b) Solution after 50 rotations: exact solution (thin line) and SRI solution (thick line).



Fig. 13. Solid body rotation of Zalesak’s disk with fourth order Runge–Kutta for the SL transport, and p = 5, using Gauss–Lobatto quadrature points based on
the Chebychev polynomials. (a) Solution after one rotation: exact solution (thin line) and SRI solution (thick line). (b) Solution after 50 rotations: exact
solution (thin line) and SRI solution (thick line).

Fig. 14. Solid body rotation of Zalesak’s disk with fourth order Runge–Kutta for the SL transport, and p = 5, using uniformly distributed quadrature points.
(a) Solution after one rotation: exact solution (thin line) and SRI solution (thick line). (b) Solution after 50 rotations: exact solution (thin line) and SRI
solution (thick line).
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All these parametric tests suggest that:

� Gauss–Lobatto quadrature based on Legendre polynomials performs best,
� p = 5 is sufficient to accurately represent the notch, even on two grid cells,
� the accuracy of the Runge–Kutta integration becomes important for long-time transport.

The area conservation errors for different parameters are given in Table 2. Because the errors at the top and at the bottom
of the notch tend to compensate, this measure does not represent the overall accuracy of the shape of the disk and might be
misleading on its own. However, it provides some clues on the conservation property of SRI. The error values obtained are
typically below one percent, even after 50 rotations, which is well below what was observed on the same mesh with the
particle level set (PLS) method [13].

2.8. Sphere in a deformation field

The velocity field for the previous case was linear, meaning that a tri-linear interpolation of the velocity to the quadrature
points location will be exact. In general, this will not be the case, and therefore it is interesting to assess the accuracy of SRI
Table 2
Area conservation errors for Zalesak’s disk problem with different parameters.

p Temporal order % Area loss after one rotation % Area loss after 50 rotations

5 2 0.366 1.100
5 4 0.366 0.595
9 4 0.488 0.899



O. Desjardins, H. Pitsch / Journal of Computational Physics 228 (2009) 1658–1677 1669
for non-linear velocities. As an example of such a test case, the deformation of a three-dimensional sphere can be employed.
This test case was first proposed by Enright et al. [13], using a velocity field discussed in LeVeque [31]. A sphere of radius 0.15
is placed at (0.35,0.35,0.35) in a unit box, discretized by a 1003 mesh. The velocity field is set to
Fig. 15

Fig. 1
uðx; y; z; tÞ ¼ 2 cosðpt=TÞ sin2ðpxÞ sinð2pyÞ sinð2pzÞ;
vðx; y; z; tÞ ¼ � cosðpt=TÞ sinð2pxÞ sin2ðpyÞ sinð2pzÞ;
wðx; y; z; tÞ ¼ � cosðpt=TÞ sinð2pxÞ sinð2pyÞ sin2ðpzÞ;

ð11Þ
where T = 3. The time step size is set to 0.005, and the second order Runge–Kutta scheme is used for the temporal integration.
Snapshots of the interface as resolved on the flow solver mesh at t = 0, 0.3, 0.6, 1.0, 1.5, 2.0, 2.5, 3.0 are shown in Fig. 15. The
geometrical features of the interface are very similar to the results of Enright et al. [13], where the thin sheet that is formed
at t = T/2 is starting to disappear from the flow solver mesh, but the sphere at t = T is still properly recovered.

The sub-cell interface reconstruction provided by the marching cubes algorithm is shown in Fig. 16, where it appears
clearly that even at t = T/2, where the stretching is maximum, the sub-cell polynomial reconstruction is capable of retaining
. Sphere in a three-dimensional deformation velocity field. Evolution of the location of the interface at the flow solver level as a function of time.

6. Sphere in a three-dimensional deformation velocity field. Evolution of the location of the interface at the sub-cell level as a function of time.
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Fig. 17. Volume error as a function of time for the sphere in a three-dimensional deformation velocity field.
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the thin sheet. Because this sheet is still properly resolved, it is fully recovered on the flow solver mesh when the flow is
inverted.

The evolution of the volumetric error as a function of time is shown in Fig. 17.
Even at t = T/2, the error remains very small, and is comparable to the results of Enright et al. [13]. At the end of the sim-

ulation, the volume conservation error is back to less that 0.1%, which is more than an order of magnitude smaller than what
was obtained by Enright et al. [13]. It is interesting to note that these good results are obtained with p = 5, where each cell of
the refined band has to transport ð5� 1Þ3 ¼ 64 quadrature points, which is similar to the number of particles that were
transported by Enright et al. [13].

3. Coupling with momentum solver

3.1. Incompressible Navier–Stokes equations

In order to describe the flow in two phases, the incompressible form of the Navier–Stokes equations is introduced,
ou
ot
þ u � ru ¼ � 1

q
rpþ 1

q
r � ðl½ruþrut�Þ þ g; ð12Þ
where u is the velocity field, q is the density, p is the pressure, g is the gravitational acceleration, and l is the dynamic vis-
cosity. The continuity equation can be written in terms of the incompressibility constraint
oq
ot
þr � ðquÞ ¼ oq

ot
þ u � rq ¼ 0: ð13Þ
The interface C separates the liquid from the gaseous phase. In each phase, the material properties are constant, hence q ¼ ql in
the liquid phase, whileq ¼ qg in the gas phase. Similarly,l ¼ ll in the liquid and l ¼ lg in the gas. At the interface, the material
properties are subject to a jump that is written ½q�C ¼ ql � qg and ½l�C ¼ ll � lg for the density and the viscosity, respectively.

The velocity field is continuous across the interface, ½u�C ¼ 0. However, the pressure is not continuous between the two
phases, and we can write
½p�C ¼ rjþ 2½l�Cnt � ru � n; ð14Þ
where r is the surface tension coefficient, j is the interface curvature, and n is the interface normal.

3.2. Flow solver

3.2.1. Numerical methods
The flow solver used here is NGA, described extensively in Desjardins et al. [32]. This solver is structured, parallel, and has

been designed for direct numerical simulations (DNS) and large eddy simulations (LES) of complex, reactive, turbulence
flows. The numerical methods employed in this code are therefore tailored for the simulation of turbulence. The variables
are staggered in space and time, and centered finite difference schemes are used to avoid all numerical dissipation. In the
case of single phase computations, primary and secondary conservation are verified, meaning that mass, momentum, and
kinetic energy are discretely conserved, which is known to be desirable when simulating turbulence [32]. At the phase-inter-
face, these properties will be lost, because of the specific two-phase procedures described below. While the spatial order of
accuracy of NGA can be arbitrarily high, only second order accuracy will be employed here, since the formal order of accuracy
will be limited by the interfacial treatment.

Time integration is based on an iterative, second order, Crank–Nicolson formulation. In order to provide additional
robustness, each sub-step of the Crank–Nicolson scheme is performed in a semi-implicit manner, using an approximate fac-
torization approach similar to Choi and Moin [33] in order to decouple the spatial directions. Each resulting linear problems
is then solved directly using a parallel polydiagonal solver.

3.2.2. Ghost fluid approach
Because NGA is based on a fractional step approach, a Poisson equation is solved to enforce continuity (Eq. (13)). However,

the pressure exhibits a jump due to surface tension forces, as shown in Eq. (14), and the pressure gradient term in the Navier–
Stokes equations contains the density, which is discontinuous. In order to discretize the pressure Poisson equation, as well as
the pressure gradient term, the ghost fluid method (GFM) [2] provides an attractive solution. By first extending the pressure
across the interface using Taylor series, standard finite differencing can be used to compute derivatives of the pressure. The
pressure jump is then added explicitly afterwards. In one dimension, if the interface C is located at xC, between xi and xiþ1

and xiþ1 is in the liquid, we introduce h ¼ ðxC � xiÞ=Dx, where Dx ¼ xiþ1 � xi, as well as a modified density qH ¼ qghþ
qlð1� hÞ. The variable coefficient pressure Laplacian that is used at xi in the pressure Poisson equation is then written
o

ox
1
q

op
ox

� �����
g;i

¼
1
qH ðpl;iþ1 � pg;iÞ � 1

qg
ðpg;i � pg;i�1Þ

Dx2 � ½p�C
qHDx2 : ð15Þ
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More details on the derivation of GFM are provided in [34,35,2], and the derivation of Eq. (15) is given in Desjardins et al. [5].
This approach allows to use standard discretization techniques, and has the additional benefit of naturally embedding the
surface tension force in a sharp manner in the pressure term, therefore completely avoiding spurious currents when the
interface curvature is known exactly.

3.2.3. Viscous treatment
In order to facilitate the implicit formulation for the viscous term, the choice is made here to use CSF [1] to discretize the

discontinuous density and viscosity that appear in the viscous term of the Navier–Stokes equations. For this term only, both
the viscosity and the density are modeled by
Table 3
Depend

q
La

Dt

Ca
qðx; tÞ ¼ qg þ ðql � qgÞHCðx; tÞ;
lðx; tÞ ¼ lg þ ðll � lgÞHCðx; tÞ;

ð16Þ
where HC is a smeared out Heaviside function as in [36]. The lack of a sharp model for the viscous term is not expected to
influence the quality of the results significantly.

4. Validation and numerical results

Several two-phase flow test cases are now presented in order to assess the behavior of the proposed approach. The first
case of a two-dimensional drop demonstrates that the spurious currents generated by curvature errors remain sufficiently
small. Then, a standing wave is computed in order to verify the accurate description of surface tension and viscous forces. To
assess the convergence of the method on a more complex two-phase flow problem, a Rayleigh–Taylor instability is com-
puted. Finally, a turbulent two-phase shear layer simulation is presented, displaying the capability of the method to handle
turbulent atomization problems.

4.1. Spurious currents

First, a two-dimensional drop of diameter D = 0.4 is placed in the center of unit size box. Initially, the velocity field is zero,
but because of inaccuracies in the computation of interfacial curvature, a spurious flow will be generated. The two fluids have
the same density q and the same viscosity l = 0.1, the surface tension coefficient r is unity. In order to vary the relative impor-
tance of surface tension and viscous forces, the Laplace number La ¼ 1=Oh2 ¼ rqD=l2 is changed by modifying the densities of
both fluids, where Oh is the Ohnesorge number. To assess the intensity of the spurious currents, the Capillary number
Ca ¼ jumaxjl=r is computed at a non-dimensional time tr=ðlDÞ ¼ 250. The simulations are performed on a 32 � 32 mesh,
and the time step size is varied to verify the capillary CFL restriction. Detailed parameters and results are reported in Table 3.

The resulting capillary numbers show little dependence on the Laplace number, and the values of Ca remain very small.
Therefore, it is expected that the spurious currents should not affect two-phase flow simulations based on the SRI method.

4.2. Standing wave

Next, the interaction of surface tension forces with viscous effects is assessed by simulating the viscous decay of a two-
dimensional standing wave with various density ratios. In a [0,2p] � [0,2p] domain, two fluids are initially separated by an
interface defined by the zero iso-contour of
/ðx; yÞ ¼ p� yþ A0 cosð2px=kÞ; ð17Þ
where k is set to 2p and A0 is set to 0.01k. In the x-direction, periodic boundary conditions are employed, while the y-direc-
tion assumes top and bottom symmetry. The surface tension coefficient is set to r = 2, and the kinematic viscosity m of both
fluids is set to be equal. In the case of similar kinematic viscosities, Prosperetti [37] provides a theoretical solution to the
evolution of the wave amplitude, which we will use to compare our results. The time is non-dimensionalized using the invis-
cid oscillation frequency x0 ¼

ffiffiffiffiffiffiffiffiffiffi
r

q1þq2

q
, where q1 and q2 are the densities in each fluid. Following the numerical study of

Herrmann [15], two cases are considered. The first one assumes q1 = q2 = 1 and m = 0.064720863. The simulations are per-
formed on various meshes, from 8 � 8 to 64 � 64, until x0t ¼ 20 is reached. Fig. 18 presents both the evolution of the wave
amplitude with time for the different meshes in comparison to the theory, and the time evolution of the error in amplitude.
The rms value of the error is then summarized in Table 4. Fig. 19 shows that close to second order convergence is obtained
ence of the magnitude of parasitic currents with the Laplace number for a static droplet with surface tension on a 32 � 32 mesh.
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Fig. 18. Damped surface wave problem with unity density ratio. 8 � 8 mesh (dash-dotted line), 16 � 16 mesh (dotted line), 32 � 32 mesh (dashed line),
64 � 64 mesh (solid line), and theory (symbols).

Table 4
RMS value of the amplitude error for the standing wave problem with unity density ratio.

Mesh Error

8 � 8 0.27082
16 � 16 0.08356
32 � 32 0.02808
64 � 64 0.01346
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Fig. 19. Convergence of the amplitude error for the standing wave problem with unity density ratio.
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for this problem. Moreover, while the 8 � 8 mesh predicts an incorrect frequency, leading to large errors in amplitude, the
16 � 16 mesh leads to very satisfactory results.

The second case considers a density ratio of q2/q1 = 1000, and m = 0.0064720863. Fig. 20 shows the results for this case,
and Table 5 summarizes the rms of the amplitude error. Again the convergence shown in Fig. 21 is between first and second
order, and the 16 � 16 solution is already very satisfactory. This confirms that the proposed approach is capable of accurately
predicting this flow, even with a relatively small number of points per wavelength.

4.3. Rayleigh–Taylor instability

The SRI approach is now employed to simulate the growth of a two-dimensional Rayleigh–Taylor instability. Numerous
studies have used this problem to characterize the quality of interface transport methods, see e.g. [15]. However, many of
these do not consider surface tension effects. The case studied here follows the simulation of Gomez et al. [38], which in-
cludes surface tension forces. In a [1 � 4] domain, two fluids about each other are initially separated by an interface defined
by the zero iso-contour of
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Fig. 20. Damped surface wave problem with density ratio 1:1000. 8 � 8 mesh (dash-dotted line), 16 � 16 mesh (dotted line), 32 � 32 mesh (dashed line),
64 � 64 mesh (solid line), and theory (symbols).

Table 5
RMS value of the amplitude error for the standing wave problem with density ratio 1:1000.

Mesh Error

8 � 8 0.10127
16 � 16 0.02421
32 � 32 0.00887
64 � 64 0.00353
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Fig. 21. Convergence of the amplitude error for the standing wave problem with density ratio 1:1000.
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/ðx; yÞ ¼ yþ A0 cosð2pxÞ; ð18Þ
where A0 is taken to be 0.05. The top fluid has a density q1 = 1.225, while the density of the bottom fluid is set to q2 = 0.1694.
Both fluids have the same dynamic viscosity, l1 = l2 = 0.00313, and the surface tension coefficient is set to r = 0.1337. Five
different meshes are considered, ranging from 32 � 128 to 512 � 2048. Fig. 22 presents the temporal evolution of the inter-
face location for the finest mesh. These results are in good agreement with the simulations of Gomez et al. [38], and show the
expected formation and growth of a spike of heavy fluid, while a bubble of light fluid rises. When comparing the solution
between the various meshes for different times, as shown in Fig. 23, it can be seen that the mesh convergence is rather slow.
A more quantitative evaluation of the rate of convergence of the solution is performed in Table 6, where the error in the max-
imum depth of the spike with the different meshes is reported at t = 1.0, 1.1 and 1.2, considering the finest solution as the
reference solution. The error in spike penetration is then plotted as a function of the mesh size in Fig. 24. The resulting error
initially converges slowly, but reaches second order convergence rapidly. However, if one considers more complex features
of the flow that involve larger curvatures, such as the extremities of the mushroom cap shape at the end of the spike, it is
clear that slower convergence is achieved.



Fig. 22. Phase-interface shape as a function of time for the Rayleigh–Taylor instability problem on a 512 � 2048 mesh.

Fig. 23. Phase-interface shapes as a function of time for the Rayleigh–Taylor instability problem. Arrow indicates increasing mesh sizes (32 � 128,
64 � 256, 128 � 512, 256 � 1024 and 512 � 2048).

1674 O. Desjardins, H. Pitsch / Journal of Computational Physics 228 (2009) 1658–1677
4.4. Two-phase shear layer

Finally, the SRI approach is employed in a complex realistic two-phase flow problem, namely the simulation of a three-
dimensional turbulent shear layer. The computation is based on the experimental work of Ben Rayana [39]. The simulation is



Table 6
Error in maximum penetration of the spike of heavy fluid compared to the finest simulation for the Rayleigh–Taylor instability problem, at different times using
coarser meshes.

Mesh t = 1.0 t = 1.1 t = 1.2

32 � 128 0.09408 0.08566 0.05987
64 � 256 0.04300 0.03841 0.02306
128 � 512 0.01569 0.01318 0.00678
256 � 1024 0.00328 0.00270 0.00151
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Fig. 24. Convergence of the error in spike penetration for the Rayleigh–Taylor instability problem at different times: t = 1.0 (solid line), t = 1.1 (dashed line)
and t = 1.2 (dot-dash line).
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run on a 512 � 128 � 256 mesh. Fig. 25 illustrates the setup of the shear layer, with water flowing on a flat surface, while air
is injected at higher velocity above the water surface. The two flows are separated at injection by a lip of thickness
e = 2.2 mm, and their velocity profiles at injection are taken from the experimental measurements. The properties of both
fluids, including the surface tension coefficient, are those of water and air, with the exception that the water density has been
reduced to ql ¼ 50 kg=m3 in order to ensure numerical stability. As in the experiment, the momentum flux ratio is set to
M = 16, with a bulk air velocity of Ug ¼ 20 m=s and a bulk water velocity of Ul ¼ 0:7746 m=s, for a height of the water layer
of 10 cm.

Fig. 26 shows a top view of the interface in a region of about 9 cm � 7 cm right after the lip, both for the experiment and
the simulation. From a qualitative point of view, the simulated interface corresponds to the experimental results. The first
large Kelvin–Helmholtz–type structure is properly recovered, including some lateral wrinkling of the interface within the
wave. Secondary lateral instabilities then follow, leading to fingering of the interface, and to the generation of droplets.
While the experimental picture shown here does not display any ligament but only a few droplets, they were observed
experimentally. Note that the difference in density ratio could explain the tendency of the simulation to generate more lig-
aments, potentially because of aerodynamic forces. The SRI approach appears robust even in the presence of a complex tur-
bulent flow.

Finally, Fig. 27 presents the relative cost of the different components of the NGA code during the course of the shear layer
simulation. Only the three main elements, namely the SRI solver, the pressure solver, and the velocity solver are included
here. Note that the sum of these three components corresponds to almost 100% of the cost of the full NGA code. SRI is found
to correspond to the third of the cost of the full code, well behind the pressure solver, which accounts for almost 50% of the
simulation cost. This confirms that even for a realistic parallel simulation with complex topology, the SRI approach remains
affordable, with a cost well below that of the pressure solver.
Fig. 25. Schematics of the computational setup for the two-phase shear layer flow. Dimensions are given in meters.



Fig. 26. Top view of the phase-interface in the shear layer flow. Flow direction is from top to bottom.
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Fig. 27. Relative cost of the different components of the NGA code during the course of the shear layer simulation: SRI solver (circles), velocity solver
(squares) and pressure solver (diamonds).
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5. Conclusion

A spectral refinement approach for the description of interfacial flows has been proposed. This method introduces quad-
rature nodes in each cell to enable the construction of high order polynomials to represent a level set function with improved
accuracy. By providing a sub-cell description of the interface structures, accurate transport becomes possible, even for the
smallest resolved scales. The cost of the method remains reasonable even for large numbers of quadrature points thanks
to a semi-Lagrangian transport scheme. On basic transport tests, this approach has been found to be more accurate than
PLS [13], with the additional benefit that no frequent re-initialization was found to be necessary, as in [18]. The coupling
of the SRI approach with the flow solver NGA, a structured code with numerical schemes tailored for turbulence simulation,
has then been performed. Using GFM, a sharp description of the interfacial discontinuities is possible. Moreover, additional
robustness is obtained by using a semi-implicit integration of the Navier–Stokes equations. The resulting solver is used to
simulate several canonical two-phase flow problems, and satisfactory results are obtained. The full method has finally been
employed for the simulation of a two-phase shear layer. Despite the complexity of the flow structures, the SRI approach was
found to remain robust, and to predict an interface shape that agrees qualitatively with the experimental results.
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